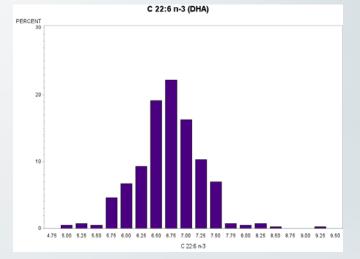


Selection of fatty acid composition in muscle of Atlantic salmon

Siri Storteig Horn



- Evaluate the selection potential for increased marine omega-3 fatty acids in Atlantic salmon muscle
- Provide insight into fatty acid metabolism in Atlantic salmon muscle

Data material

- 668 slaughter-sized (3.6 kg) Atlantic salmon fed a high fish oil-diet
- 194 full-sib families (92 sires and 194 dams)
- Individual muscle fatty acid composition (% of total muscle fatty acids) measured by gas-chromatography
 - Normally distributed

Statistical model

• Linear animal model:

 $y = X\beta + Zu + e$

- Bodyweight and sex was included as fixed effects
- Univariate analyses were performed to estimate heritabilities for all traits
- Bivariate analyses were performed to estimate (co)variances used to estimate genetic correlations

Res

Res	ults				18:3n-3 - ELOV5	Δ6 Desaturase → Δ8 Desaturase	18:4n-3 ELOV5↓ 20:4n-3 Δ5 Des	EPA saturase 20:5n-3 ELOV2,4,5	DHA
	Fatty acid	18:3n-3	20:3n-3	20:4n-3	20:5n-3	22:5n-3	22:6n-3	¥ 22:5n-3	22:6n-3
ALA→	18:3n-3	0.26	0.21	-0.21	*	-0.15	-0.56	ELOV2,4 24:5n-3	$ \xrightarrow{\beta \text{-oxidation}} 24:6n-3 $
	20:3n-3	-0.03	0.18	-0.20	0.40	0.43	-0.06		
	20:4n-3	0.03	0.07	0.14	-0.33	-0.14	0.25		
EP →→ A	20:5n-3	*	0.01	-0.21	0.09	0.69	0.23		
	22:5n-3	-0.44	0.30	0.19	0.42	0.22	0.32		
DHA→	22:6n-3	-0.28	0.33	0.64	0.16	0.41	0.26	_	

Heritability on the diagonal. Phenotypic correlations on the upper triangle. Genetic correlations on the lower triangle. *Parameters not converged

Lipid deposition

	Musc	le fat	Visce	ral fat	Liver fat	
Fatty acid (%)	r _P	r _G	r _P	r _G	r _P	r _G
16:0	0.44	0.86	0.43	0.66	0.12	0.20
18:1n-9	-0.38	-0.67	-0.41	-0.67	-0.14	-0.17
18:2n-6						
ALA -> 18:3n-3						
EP -> 20:5n-3						
A 22:5n-3						
DHA→ 22:6n-3						

Phenotypic (r_P) and genetic (r_G) correlations.

Trait definition for selection

- Quantitative content of EPA and DHA (grams per 100 grams muscle)
 - High correlation to muscle fat
 - Not desired by breeding industry
- Proportional content (percentage of total muscle FA)
 - EPA
 - Favorable genetic correlations to visceral and liver fat
 - Heritability 0.09
 - DHA
 - Positive genetic correlation to visceral fat
 - Heritability 0.26
 - EPA and DHA
 - Both are essential fatty acids

Conclusions

- Individual FAs vary in heritability and correlations to lipid deposition traits
- FAs play different roles in lipid metabolism
- It is possible to change the muscle FA composition through selective breeding
- Selection for EPA %, DHA % or both will increase the content of these essential omega-3 fatty acids in salmon muscle
 - correlated selection responses must be considered

Thank you for your attention

www.nofima.no